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We study numerically the interaction of two small satellites, initially on circular orbits with 
slightly different radii. We show first that by going to Hill's limit of vanishing masses, one can 
reduce the problem to a simpler form in which only one dimensionless parameter remains: the 
reduced impact parameter. We present then a detailed study of the family obtained when this 
parameter is varied. Each orbit consists of three phases: approach of the two small bodies, inter- 
play, and departure. Fourth-order series are used to represent the asymptotic motion of the two 
small bodies in the approach and departure phases; these series are matched with a numerical 
integration of the interplay phase to give an accurate representation of the entire orbit. For each 
orbit, we compute the net effect of the encounter, essentially characterized by an increase of the 
separation of the satellite orbits. We compute also the minimal distance of approach of the two 
satellites. In the limiting cases of large and small impact parameters, the results are compared with 
the predictions of perturbation theories. Finally we study the "transitions," which are apparent 
discontinuities of the family with a sudden change of the direction of departure. We show that they 
can be explained by the asymptotic approach of the orbit to an unstable periodic solution of Hill's 
problem. Transitions take place for infinitely many values of the parameter, forming a Cantor-like 
set. © 1986 Academic Press, Inc. 

1. INTRODUCTION 

We consider the following problem. Two 
light bodies ME and M3 describe initially co- 
planar and circular orbits, with slightly dif- 
ferent radii, around a heavy central body 
M1. Bodies M2 and M3 are initially far apart, 
so that their mutual attraction is negligible. 
However, the inner body has a slightly 
larger angular velocity and eventually 
catches up with the outer body; the dis- 
tance from M2 to M3 becomes small and 
their mutual attraction is no longer negligi- 
ble. We shall call this an encounter. (An 
encounter should not be confused with a 
physical collision between the two bodies.) 
What is the motion of ME and M3 during and 
after the encounter? 

This problem covers a number of actual 
situations in astronomy; in particular, the 
gravitational interaction between particles 
in planetary rings, with incidences on the 
ring radial structure (Goldreich and Tre- 
maine, 1979, 1980; H6non, 1981, 1984)and 
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on the azimuthal brightness variation 
(Franklin and Colombo, 1978; Karttunen, 
1983); the motion of coorbital satellites, 
such as Saturn's Janus and Epimetheus sat- 
ellites (Dermott and Murray, 1981; Yoder 
et al., 1983); the accretion of particles by a 
proto-planet (Schofield, 1981) with inci- 
dences on its rate of rotation (Giuli, 
1968a,b); the distribution of particles 
around the Earth (Dole, 1962). 

For convenience, Mt will be called the 
planet and M2, M3 will be called the satel- 
lites. However, the model is applicable to 
more general situations. For instance, Mt 
can be the Sun while ME and M3 are planets 
or interplanetary particles, as in the last 
two items of the above list. The difference 
between the radii of the initial circular or- 
bits will be called the impact parameter. 

A number of equations and analytical de- 
velopments will be needed. They are de- 
scribed in a companion paper (H6non and 
Petit, 1986), which will be referred to as 
Paper I. 
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The problem is a particular case of the 
general three-body problem. Analytic ap- 
proximations of the solution are available in 
two cases: 

(i) When the impact parameter is suffi- 
ciently large, the result of the encounter is 
only a slight deflection of M2 and M3 from 
their previous circular orbits. These deflec- 
tions can then be obtained by a perturbation 
theory (Goldreich and Tremaine, 1979, 
1980). 

(ii) When the impact parameter is very 
small, the interaction of M2 and M3 pro- 
duces a "horseshoe" motion: M2 and M3 
"repel"  each other azimuthally and never 
come in close proximity. This case can also 
be treated by a perturbation theory (Der- 
mott and Murray, 1981; Yoder et  al. ,  
1983). 

Between these two asymptotic cases, 
however, no theory exists, and apparently 
only a numerical integration of the equa- 
tions of motion can give the answer. In- 
deed, the computed orbits are sometimes 
so complicated (see Fig. 1) that it seems 
doubtful that a theory will ever be able to 
account for them. 

In the present paper, we shall explore the 
problem by means of numerical integration, 
for all values of the impact parameter, so as 
to bridge the gap between the two above 
approximations. Scattered computations 
exist already in the literature (Dole, 1962; 
Giuli, 1968a; Franklin and Colombo, 1978; 
Dermott and Murray, 1981; Schofield, 
1981; Karttunen, 1983), but no systematic, 
detailed exploration of the problem appears 
to have been made. Our first aim is to pro- 
duce basic reference material for the vari- 
ous applications. However, the family of 
solutions is also of interest in itself; as will 
be seen, it has some remarkable properties. 

The present work differs from the earlier 
computations in other important respects. 
First, these computations used the standard 
equations of the general three-body prob- 
lem. After appropriate choices of units, the 
problem then still contains three essential 

parameters: the ratio of the two initial orbit 
radii, and the ratios of the masses of the 
two satellites to the mass of the planet. A 
detailed exploration of this three-dimen- 
sional parameter space is not feasible. We 
shall show, however, that if the masses of 
the satellites are small compared to the 
mass of the planet (this is the case in all 
applications), the equations can be reduced 
to a simpler form, which is the classical set 
of Hill's equations. This new form has a 
number of advantages: 

(1) Only one parameter, h, remains; h is 
essentially a reduced impact parameter. We 
have then to consider only a one-parameter 
family of orbits, which can be computed 
and tabulated in as much detail as we wish. 
With appropriate scale conversions, this 
single family covers all practical cases of 
interest. 

(2) This new formulation is more natural 
and much better adapted to numerical com- 
putation. The original equations of the 
three-body problem contain quantities with 
very different orders of magnitude, and this 
degrades the accuracy: for instance the dis- 
tance between the two satellites is com- 
puted as a small difference between two 
large numbers and is therefore ill-deter- 
mined, yet this distance plays a critical role 
in the overall accuracy. Numerical compu- 
tation becomes impossible if the masses of 
the satellites are too small (Franklin and 
Colombo, 1978). By contrast, in Hill's 
equations no small quantity is left; every- 
thing is of order unity, and full accuracy is 
maintained even in the limit of vanishing 
satellite masses. 

(3) Hill's problem has an additional sym- 
metry with respect to the radial coordinate. 
This halves the number of orbits to be con- 
sidered. It also explains the quasi-symme- 
tries observed in earlier computations. 

(4) Computation is faster since Hill's 
equations are simpler than the full three- 
body equations. 

We emphasize that, contrary to what is 
often believed, it is not necessary that one 
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of  the satellites has a small mass  compared  
to the o ther  for Hil l ' s  equations to be appli- 
cable. Any  mass  ratio is acceptable  (see Pa- 
per  I). 

Another  improvemen t  in the present  
work  resides in the computa t ion  of the 
starting values for  the numerical  integra- 
tion. In all earlier computat ions ,  a zero-or- 
der  approximat ion  has been  used: the start- 
ing values are simply those of  the circular 
orbits. Here  we use a high-order approxi-  
mation,  obtained by integrating analytically 
the mutual  effect  of  the two satellites up to 
the t ime at which numerical  integration is 
started (see Paper  I). Symmetr ical ly ,  at the 
end of  the numerical  integration, the orbit  is 
matched  to an asymptot ic  solution in order  
to obtain accura te  final values. 

As this paper  was being prepared,  we 
were  informed of  the existence of  recent  
work  on the same subject by Spirig and 
Waldvogel  (1985). 

2. EQUATIONS 

2.1. Reduction to Hill's Equations 

Only a br ief  rev iew of  the reduction to 
Hil l ' s  equations will be given here; details 
can be found in Paper  I. We assume that the 
mass  of  ei ther satellite is small compared  to 
the mass  of  the planet: 

m2 ~ ml,  m3 "~ ml,  (1) 

where m is the total mass  of  the system: 

m = ml + m2 + m3. (3) 

We define 

m2 + m3 
/ .L = - -  ( 4 )  

m 

Let  Xi, Yi be the coordinates  of  body i in an 
inertial sys tem.  We introduce dimension- 
less coordinates  by 

X; Xi y[ Y~ 
a0 a0 

m i  
m" = - - ,  t '  = tot, (5) 

m 

and for  simplicity we drop the pr imes in 
what  follows. In the new variables,  the ra- 
dius of  the orbit,  the angular velocity,  the 
mass  of  the sys tem,  and the gravitational 
constant  are all equal to 1. We choose  the 
origin of  t ime so that the two satellites are 
in the vicinity o f X  = 1, Y = 0 at t = 0. We 
introduce new coordinates  ~:, */, which will 
be called Hill's coordinates: 

X i  - X1 ~--- (1 + t-£1/3~i) COS t - ~£1/3./i sin t, 

Yi - I11 = (1 + ~1/3~i) sin t + tzl/3*/i COS t. 

( i =  2, 3) (6) 

We go over  to new coordinates  ¢*, ,/*, ¢, 
*/, describing, respect ively,  the position of 
the center  of  mass  and the relative position 
of  the two satellites: 

where  m i  is the mass  of  body Mi. We as- 
sume also that the distance be tween the 
two satellites is small compared  to their dis- 
tance to the planet.  In a zero-order  approxi-  
mation,  the two satellites can then be con- 
sidered as a single body  in orbit  around the 
planet.  This orbit  will be called the mean 
orbit, and will be  assumed to be circular. 
We call a0 the radius of  the mean  orbit. (The 
precise definition of  a0 does  not matter ,  as 
long as it is nearly equal to the radii of  the 
satellite orbits). The angular velocity on the 
mean orbit  is 

to = GX/b--~mao 3 (2) 

~ ,  _ m2~2 + m3~3 */19 * = m2./2 + m3./3 

m2 + m3 m2 + m3 

f = f3 - ~:2, "q = */3 - */2. (7) 

The equations for the motion of  the center  
of  mass  are linear and easily integrated (Pa- 
per  I). The  equations of  relative motion are 
approximate ly  

*/ 
= 2 ~ + 3 ~  ~ ~ / = - 2 ~  p3 p 3 ,  

p = v T  + */2, (8) 

which are Hill's equations (Hill, 1878). The 
error  in these equat ions is of  the order  of  
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/z I/3. They  b e c o m e  exact  in the limit of  van- 
ishing satellite masses .  In the case of  Sat- 
u rn ' s  rings, for instance,  a typical value for  
/x is 10 -24, so that  the error  in Hill 's  equa- 
tions is o f  the order  of  10 -8. For  the coorbit-  
ing satellites Janus and Ep ime theus , / z  is of  
the order  of  10 -9 and the error  is of  the 
order  of  10 -3 . 

Hil l ' s  equat ions admit  the integral 

F = 3~ :2 + 2 _ ~2 _ ~2 (9) 
P 

which can be called the J a c o b i  in tegra l  by 
analogy with the restr icted problem.  

Note  that  Hil l ' s  equations are the same 
for all values of  the satellite masses .  

2.2.  In i t ia l  V a l u e s  

We assume that before their encounter ,  
the two satellites are on circular orbits,  
with radii a2 and a 3 close to ao. We write 

a2 = ao(1 + /zl/3h2), 

a3 = ao(1 + /zl/3h3). (10) 

As is easily shown,  these circular orbits ap- 
pear  in Hil l ' s  coordinates  as rectilinear mo- 
tions 

~ i  : hi,  "Oi = - a h i ( t  - -  7-i) 
( i - -  2, 3). (11) 

The constants  7-2, 7-3 represent  the phases  of  
M2 and Ms on their orbits. The relative un- 
per turbed motion is then 

= h,  ~q = - ] h ( t  - 7-) (12) 

with 

h : ha - h2, 7" = r3 - 7-2. (13) 

For  a large relative distance,  (8) reduces to 

= 2~ + 3~:, ~ = - 2 ~ ,  (14) 

and it can be verified that (12) is indeed a 
solution of  (14). 

The initial mot ion (12) depends on two 
parameters  h and 7-. However ,  7- is a trivial 
pa rame te r  which can be eliminated by a 
simple change of  the origin of  time. There-  
fore the orbits which we are considering 

form essentially a one-paramete r  family, 
which we shall call f a m i l y  S E  (for satellite 
encounter) .  The pa ramete r  h will be called 
the r e d u c e d  i m p a c t  p a r a m e t e r ,  or the im-  
p a c t  p a r a m e t e r  for  short.  

Only posit ive values of  h need to be con- 
sidered, because  of  the symmetr ies  of  the 
equations of  mot ion (8): to any solution 
there cor responds  another  solution sym- 
metric with respect  to the origin. (We can 
also ensure  that  h is posi t ive by defining M2 
as the inner satellite and M3 as the outer  
satellite.) We assume therefore  

h > 0. (15) 

(We can ignore the case h = 0: in that case,  
the two satellites describe the same circular 
orbit  with the same angular velocity and 
never  approach  each other.)  F rom (12) we 
deduce that  before the encounter ,  both ~: 
and "O are positive: the incoming relative 
orbit  lies in the first quadrant.  

N o w  we consider  the full equations (8) 
and we seek the solution which has the as- 
ymptot ic  fo rm (12) for t --> -o0. Actually 
our p rob lem is o f  the singular perturbat ion 
type,  and it is found (see Paper  I) that the 
asymptot ic  mot ion for the per turbed prob- 
lem has the fo rm 

= h,  ~q = - ~ h ( t  - T) 

_ 4 h 2 in[-.~h(t - 7-)], (16) 

which differs f rom (12) by the addition of  a 
logarithmic term. 

The equations of  motion have an inher- 
ent t ime scale of  order  unity, because  the 
unper turbed equations (14) admit  oscillat- 
ing solutions with f requency 1 (see below). 
As a consequence ,  the integration step 
must  a lways be small compared  to unity, 
even when  the satellites are still very far 
f rom each other;  a t tempts  to use a larger 
step produce  numerical  instabilities and in- 
accurate  results. In pract ice  this means  that 
the integration must  be started f rom some 
finite t ime to, and that It01 cannot  be very 
large: the t ime needed to compute  the ap- 
proach  of  the two satellites is roughly pro- 



540 PETIT AND HENON 

portional to It0l. Some analytic approxima-  
tion is therefore  required for the solution in 
the interval - ~  < t < to. 

Appropr ia te  expansions  have been de- 

rived in Paper  I. The simplest form of  these 
expansions  is obtained by using "0 as inde- 
pendent  variable instead of  the t ime t. To 
order  4 in ~-~, we have 

~: = h - ~h t'0-1 _ 8 h 3,0-2 q_ 0 ] h  - s2t, sx -3 ~v,, - I"0 - + ( -  ~ h  I _ ~1Oh-7)'0 4, 

( = _2"0-2 + ~h2r/ 4, 

= - ~ h  + 2h-l'0 I + :~h-3"0-2 + ( _ l l h  + ~ h  5)'0 3 + (~h  I + ~Oh-7).r/ 4 

t -  1-= - : ~ h - ] r / - . ~ h  3in.0 + ~h  5- 0 i + ( -~?h  i + ~o h 7)~ 2 

zz4,, 9x ~ ( ~ h -  ~'~rh 5 ~ h  11)'0-4 + ( - z s - ~ h - 3  + 7 2 9 n  ] ' 0  - - ~  ~ -  q -  - -  . (17) 

These  series were  found to give good accu- 
racy for  reasonable  values of  '0o, the initial 
value of  "0 corresponding to t = to. Expan-  
sions to a higher order  could be used (Paper 
I gives the expansions  up to order  8); but 
this would not necessari ly  improve  the ac- 
curacy  for a given "00, because  the series 
(17) are asymptot ic  and the numerical coef- 
ficients increase rapidly with the order.  An 
examinat ion of  the series (17) for ( ,  4, ~J to 
higher order  (see Paper  I) shows that the 
coefficients of  "q i for i > 0 involve powers  
of  h ranging f rom h i-2 to h 2i+~. Therefore  
necessary  conditions for these series to 
give accurate  results are 

h'0 -1 "~ 1, h-2"0 1 ~ 1. (18) 

The value of  "0o was accordingly determined 
by the following formula:  

"O0 = a m a x ( h ,  ~5z) (19) 

where  a is a constant  whose value depends 
on the desired accuracy,  ot was generally 
taken equal to 50; the expressions (17) give 
then the initial values with an accuracy  of 
the order  of  10 --7 . (The accuracy  can be esti- 
mated simply by  compar ing numerical  inte- 
grations of  the same orbit  s tarted at differ- 
ent values of'00.) ot was increased to 100 for 
a few sensitive orbits,  for  instance in the 
transition regions (see below). 

2 . 3 .  F i n a l  V a l u e s  

As will be seen in Section 3.1, the two 
satellites typically interact  for a while and 

then separate .  When they are sufficiently 
far apart ,  their mutual  at traction becomes  
again negligible, and each satellite de- 
scribes a Kepler ian  orbit around the planet. 
These  orbits are no longer circular, how- 
ever.  In Hil l ' s  coordinates ,  the asymptot ic  
form of  the motion is an arbi trary solution 
of  (14), having the general form 

s c = h'  + k'  cos( t  - ¢ ) ,  

r I = - ~ h ' ( t  - .c') 

• o a , - 2  l n [ - ~ s h ' ( t  - ~-')] 

- 2k' sin(t - ~ ' )  (20) 

with 

s = sign('0). (21) 

This general solution depends on four arbi- 
t rary constants  h ' ,  k ' ,  r ' ,  ~ ' .  (Primes are 
used to denote  final values,  corresponding 
to t---~ +w, while unprimed values such as h 
and ~- in (12) represent  initial values,  corre- 
sponding to t ~ - ~ . )  h'  can be called the 
impact  parameter ,  as before,  k'  is the re -  

d u c e d  e c c e n t r i c i t y .  Note  that since the ini- 
tial motion is circular, the initial value of  
the reduced eccentricity is k = 0, while the 
initial value ~ is undefined. The reduced ec- 
centricity k' is related to the actual eccen- 
tricities e~, e~ of M2 and M3 by 

k'  = /.L -I/3 X/e~ 2 + e~ 2 -- 2e~ej cos y '  (22) 

where  3 / i s  the angle be tween  the semima- 
jor  axes.  

In pract ice  the numerical  integration is 
s topped at some finite t ime h ,  when 1"01 be- 
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c o m e s  again larger  than ~10 defined by  (19), 
and the values  o f  ~:, ~q, ~, ~ are noted.  H e r e  
again we  need  an analyt ic  approx ima t ion  
for  the t ime interval  tl < t < ~,  i .e. ,  for  
ma tch ing  the end point  o f  the numer ica l  in- 
tegra t ion to the  a sympto t i c  behav io r  (20). 
The  p rob l em is m o r e  difficult since the as- 

ympto t i c  mo t ion  has a more  general  form.  
The  appropr ia te  expans ions  are der ived  in 
Pape r  I; they  are  given in terms o f  an inde- 
penden t  var iable  "O~, which  is essential ly the 
ave raged  value o f , / o v e r  shor t -per iod  oscil- 
lations. To  o rde r  4 in ~ ,  these expans ions  
a r e  

with 

s ¢ = h '  + k'  cos  0 - ~sh ' - lT l f f  I + ( -9~h ' - 3  + Z~sh' lk' sin 0) '0c  2 
2 ¢ 2 8 / ,  t --31I! + ( ~ s h '  - ~ s h  -5 _ ~ s h , - l k , 2  + ~ s k '  cos  0 + ~v,, ,, sin O)rtc 3 

- r~h -2k' cos  0 + [ _ ~ h , _  1 _ 18_g6i9_1 h , -7  _ ~ h , - 3 k , 2  49 , 

~-h -Sk' + 32,, ,~ J + s ( _ ~ 6 a h , k ,  + ,4 , 99t,,-It~,3~ sin 0 - ~sk '2 sin 2 0 ] ~  4 + O ( ~ 5 ) ,  

_ 7~t,, - I  k ,  ~q¢ - 2k'  sin 0 + (!6sh'-2k'2 + g,,,, COS 0)'Oc 2 

+ (~h, -4k ,2  + 56t,,-3r, 27,, ,, COS 0 ~ s k '  sin O)'Oc 3 + 0('0~-4), 

= - k '  sin 0 + ( - 2 s  + ~ s h ' - ' k '  cos  0 ) ~  2 +~28h'-3k'  ~2r cos  0 ~sk' sin 0),/~ 3 
• ~ h  - I k ' 3 )  + [ ~ s h  '2 - a~sk'e + s ( - ~ h ' k '  + ~-h' Sk' + 99 , cos  0 

49/~ t  - 2 L '  + vz,, ~ sin 0 ~sk '~ cos  2 0 ] ~  4 + 0 ( ~ ) ,  

r} = -~h3, _ 2 k ' c o s O +  2sh '  ~1~ ~ + (kh' 3 _ ~sh7 ' 'k '  sin O)'o~ 2 

y s h  + ½sh' 'k ' 2 -  ~ s k '  c o s  O - 27 + ( - l l s h '  + ~6 , 5 56h' 3k' sin0)~/~ 3 

+ [ ~ h '  ' + 2S°h ' 7 + ~h' 3k'2 + 491., 2L' 36- ,~ COS 0 

+ s ( a ~ h ' k  ' - ~ h '  5k' - ~ h '  'k '3) sin 0 + ~ s k  '2 sin 20]~?c 4 + O(T/c 5) 

O = t - ~ o ' .  

The  relat ion be twee n  ~ and t is ana logous  to (17d) 

t r '  - a h ' - l ~  ~ ' ~ h  ' - 5 - - I  a~h' J - = a ,to - 9sh -3 In s~c + 9 ,tc + S ( - - - -  + lS-~l°h'-7)~c 2 
2240/ , ,  t --9"t --3 136 /a !  --5 + ( - Z s ~ h ' - 3  + 729  t~ ] T ~ c  + s(~-h' - 2 7  t r  ~ -  ~S-h' I I ) ~ c 4 .  

(23a) 

(23b) 

(23c) 

(23d) 

(24) 

(25) 

To obta in  the pa ramete r s  o f  the final mo-  
tion, we  mus t  subst i tu te  the values obta ined  
at the end o f  the numer ica l  in tegrat ion in 
the left sides o f  (23), and then solve these 
equa t ions  for  h ' ,  k ' ,  ~c, 0. This is mos t  con-  
venient ly  d o n e  by an i teration technique .  
(23) is rewri t ten  as 

= h '  + k'  cos  0 + f~ (h ' ,  k ' ,  ~c,  0), 

rl = agc + f z ( h ' ,  k '  ,'tic, 0), 

~: = - k '  sin 0 + a~(h', k ' ,  ~%, 0), 

*} = - a h '  - 2k'  cos  0 + 3q(h', k ' ,  ~c, 0). 

(26) 

The  f r ep resen t  small co r rec t ions  o f  o rder  
~ - i .  We  inver t  (26) into 

h' = 4(~ - f , )  + 2(-6 - J ~ ) ,  

~c = */ - f 2 ,  

k '  cos  0 = 3(f~ - ~:) + 2(f4 - ~j), 

k ' s i n 0 = j ~ - ~ .  (27) 

These  equa t ions  are  solved i terat ively:  
start ing with j~ -- j~ = j~ -- J~ -- 0, we com-  
pute  the left sides o f  (27); these values  are 
used to r e c o m p u t e  t h e f . ,  which  are defined 
by  (23) and (26); the left sides are r ecom-  
puted,  and so on.  The  i terat ion conve rges  
quickly  because  o f  the smallness  o f  the f .  

Final ly,  if  desi red,  the values o f  ~" and ~p' 
can  be ob ta ined  f rom (25) and (24), with tl 
subs t i tu ted  for  t. 
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2.4. Numerical Integration 

The two satellites are considered here as 
point masses,  and therefore can approach 
arbitrarily close to each other;  for particu- 
lar values of  the impact parameter ,  they can 
even have a collision. To ensure a smooth 
and accurate numerical integration in such 
circumstances,  we shift to regularized vari- 
ables ~, ~, i, whenever  the distance p be- 
comes less than a critical value pc. The reg- 
ularized variables are related to ~, ~q, t by 
Levi-Civita 's  transformation (Szebehely,  
1967): 

+ iT = ( ~ +  i~) 2, 

dt = 4(~2 + ~2). 
di 

(28) 

If  we replace the cartesian coordinates ~:, 
by polar coordinates O, qJ, then (28a) takes 
the simple form O = ~2, tO = 2t~. Thus, regu- 
larization halves the polar angle tO, and the 
hairpin turn made by M3 around Mz in a 
close approach is unfolded into a nearly 
straight motion. Simultaneously, the trans- 
formation (28b) on the time has the effect 
that the velocity,  instead of reaching large 
values, remains nearly constant during a 
close approach.  

At first the whole integration was made 
in regularized coordinates.  Experience 
showed, however ,  that these coordinates 
are ill-adapted for large p; the differential 
equations contain then large terms which 
nearly cancel each other,  so that accuracy 
deteriorates.  Therefore  we revert  to the 
normal coordinates ~:, ~ when O becomes 
larger than pc. The choice of  pc is not criti- 
cal; a value pc = 5 was found to give good 
results. 

A sixth-order predictor-corrector  algo- 
rithm was used for the numerical integra- 
tion, with automatic change of  time step so 
that the variation of  F in one time step is 
never  more than a specified value. This was 
generally fixed at 10 -l°. The overall accu- 
racy of  the integration, according to various 
tests, is then of  the order  of  1 0  - 9  • 

2.5. Computation of Minimal Distance 

It is of  interest to compute  the minimal 
distance of  approach of  the two satellites. 
Therefore  the value o f p  is monitored as the 
computat ion proceeds.  A local minimum of 
P is detected from the fact that p at an inte- 
gration point is smaller than at the preced- 
ing and following points. The true minimum 
is then computed by passing a straight line 
through the last two integration points and 
computing the distance from the origin to 
that line. This is done in regularized coordi- 
nates, so that the measured distance is ac- 
tually the square root of  p. This simple 
scheme gives quite accurate results, thanks 
to the fact that at the origin ~ = ~ = 0, there 
is 

d2~ d2~ 
di e - O, d i  2 - O, 

d3~ d~ d3~ 4 r  d~ 
di  3 - -  - 4 F  d-~-' di ~ - ~ - ,  (29) 

as is easily deduced from (8) and (28). Thus, 
the second derivative of  the motion van- 
ishes at the origin and the third derivative is 
parallel to the motion. The orbits are there- 
fore quite straight in the vicinity of  the ori- 
gin. This is indeed apparent  when the orbits 
are plotted in regularized coordinates.  

3. RESULTS 

3.1. General Description 

The one-parameter  family of  orbits ob- 
tained by varying h (family SE) was found 
to be of  amazing complexity;  in fact it 
seems to possess the inexhaustible richness 
of  detail which is characteristic of  noninte- 
grable problems in general. We begin with a 
loose description of  the whole family; later 
we shall come back to interesting details. 

Figures la to e, taken from a collection of  
several hundred pictures,  represent  the rel- 
ative motion (s e, 7) of  the two satellites. For  
their description, it will be convenient  to 
think of  the special case m2 >> m3, and to 
identify the origin of  the (s c, 7/) system with 
the satellite M2; the curves represent  then 
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simply the motion of  satellite M3. It should 
be borne in mind, however ,  that the results 
apply equally well for  any mass ratio m3/ 
m2. 

Loosely  speaking, three successive 
phases can be distinguished in a typical or- 
bit: (i) approach of  the two satellites; (ii) 
interplay, or temporary capture: the two 
satellites remain close to each other  (their 
distance is of  order  1 in Hill 's coordinates) 
and they perform complex relative mo- 
tions; (iii) departure: the two satellites 
move away from each other.  Permanent  
capture was never  observed:  in all com- 
puted orbits, sooner  or later the two satel- 
lites separated. This is in agreement with a 
general result by Marchal (1977) which can 
be applied to the present  problem and 
which shows that no permanent capture is 
possible, except for a set of  initial condi- 
tions of  measure zero. 

The departure is asymptotically de- 
scribed by (20), and two cases can be distin- 
guished: (i) if h' > 0, then ~q ~ - ~ ,  while f 
remains finite and oscillates around a posi- 
tive mean value; this will be called down- 
ward departure; (ii) i fh '  < 0, then ~ ~ +o% 
and ~ oscillates around a negative mean 
value; this will be called upward departure. 
When h varies, the orbit alternates from 
one kind of  departure to the other,  as will 
be seen. 

We start with large values of  h. The orbit 
of/143 is then only slightly perturbed.  There  
is no interplay phase to speak of. Figure 1 
shows an example for h = 2.4. The limit 
h ~ oo will be studied below in more detail 
(Section 3.4). 

As h diminishes, the perturbation in- 
creases (Fig. 1, h = 1.9) and a loop appears 
(h = 1.75). The shape of  the orbit begins to 
change rapidly with h. Between h = 1.7188 
and h = 1.7164 approximately,  the orbit un- 
dergoes a series of  complex changes of  
shape. Typical  examples are shown in Fig. 
1. There  is no obvious continuity along the 
family any more.  In fact,  it seems impos- 
sible to describe exhaust ively the evolution 
of  the family in this interval: as the resolu- 

tion in h is increased, more and more 
changes of  shape are revealed, apparently 
ad infinitum. We shall refer to this interval 
as the first transition zone; corresponding 
orbits in Fig. 1 are labeled zone I. Transi- 
tion zones will be considered below in more 
detail (Section 3.6). The figure for h = 
1.7187 exhibits the first instance of  an up- 
ward departure.  

From h = 1.7164 to h = 1.6664 approxi- 
mately, things quiet down and the evolution 
of  the family can again be followed: the 
shape of  the orbit changes continuously and 
comparat ively slowly with h. Departure is 
upward. For  the particular value h = 
1.672987, we observe an orbit which is sym- 
metrical with respect  to the 9 axis. A num- 
ber of  such orbits have been found. This is 
not surprising: consider the value of  ~ at a 
crossing with the f = 0 axis. This value 
varies continuously with h. Whenever  it be- 
comes equal to zero,  a symmetric orbit 
results, as is easily seen from the symme- 
tries of  the equations of  motion (8). 

Then a new interval of  violent changes 
begins, between h = 1.6664 and h = 1.6497. 
This will be called the second transition 
zone (zone II in Fig. 1). Typical shapes are 
illustrated in Fig. 1. The figure for h = 
1.6646 shows a case where the temporary 
capture is of  unusually long duration. 

A new quiet interval follows, from h = 
1.6497 to h = 1.5931. Departure is again 
upwards.  There  is an orbit symmetric with 
respect  to the r t axis at h = 1.631825. The 
orbit describes two loops around M2 until h 
= 1.620191 and only one loop afterward; 
this particular value of  h corresponds to a 
collision orbit,  i.e., an orbit in which M3 
coincides with Mz at a particular time. This 
kind of  orbit exists only in the present 
mathematical  idealization, where the satel- 
lites are considered as point masses; with 
real objects,  having a finite size, a physical 
collision would take place before that time 
and the ensuing course of  events would be 
entirely different (see Section 3.3). As is 
well known (see, for  instance, Szebehely,  
1967), a collision orbit is not a true singular- 
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FIG. 1. (a) Beginning of  family SE (satellite encounters) .  Each  frame corresponds  to one particular 
value of  the reduced  impact  parameter  h. The curve represents  the relative motion of  one satellite with 
respect  to the  other,  in Hil l 's  coordinates  (~: in abscissa ,  ~ in ordinate). The initial approach is 
downwards  from "0 = + ~ ,  in the first quadrant .  Orbits belonging to transit ion zones  are labeled zone I, 
zone II, zone III, zone IV. (b) Cont inuat ion of  family SE. 

ity: a family of  orbits can be smoothly con- 
tinued through a collision orbit. In regular- 
ized coordinates ,  everything remains finite, 
and the numerical  integration can proceed  
right through the collision orbit  without any 
problem.  

The third transition zone is contained in 
the interval f rom h -- 1.5931 to h -- 1.5918. 
Typical  orbits are shown in Fig. 1. 

There  follows a much longer period of 
quiet, f rom about  h -- 1.5918 to h = 1.3486. 
The orbit  has a simple shape. Depar ture  is 
downward .  At h = 1.446862, we find a colli- 
sion orbit. At h = 1.514780 and again at h = 
1.375290, the orbit  is symmetr ic  with re- 
spect  to the £ axis. Again a number  of  such 
orbits have been found, and again this can 
be explained by the symmetr ies  of  the equa- 

tions (8): a symmetr ic  orbit is obtained 
whenever  ~ vanishes at a crossing with the 
~: axis. 

The fourth and last transition zone lies in 
the interval f rom h = 1.3486 to h = 1.3361; 
some orbits are shown in Fig. I. 

F rom h = 1.3361 to h = 0, the evolution 
of  the orbit  is smooth.  On a given orbit, v/ 
decreases  to a minimal value along the or- 
bit, and then increases again to infinity. 
In the limit of  small h, we obtain "horse -  
shoe orb i t s"  (see Section 3.5). The inter- 
play phase vanishes again. The minimum 
of  ~ increases rapidly and tends to + ~  for 
h ---~ 0. 

It should be noted that there is nothing 
absolute about  the limits of  the transition 
zones,  as described above,  nor even about  
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FIG. l - - C o n t i n u e d .  (c) Continuation of family SE. (d) Continuation of family SE. (e) Continuation 
of family SE. Note that the frame is not the same as in previous figures. 

their number. The description was given at 
a somewhat  arbitrarily chosen level of  de- 
tail. When descending to a finer level, one 
finds that each of  the above transition zones  
is resolved into several thinner transition 
regions, separated by quiet regions. For in- 
stance, inside the fourth transition zone,  
one can isolate two smaller transition re- 
gions,  contained in the intervals (1,3486, 
1.3482) and (1.3397, 1.3361), outside of  

which the evolut ion is smooth.  This phe- 
nomenon of  finer and finer structure appar- 
ently goes on indefinitely, suggesting that 
the true transitions have the structure of  a 
Cantor set (see Section 3.6). 

3.2. Final Effect of  the Encounter 

The net effect of  the encounter is essen- 
tially characterized by the changes in the 
reduced impact parameter h and the re- 
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duced eccentricity k. These changes are not 
independent: from (9) and (12) we have for 
t ~ -o~, i .e. ,  before the encounter 

r - -  ~ h  2, ( 3 0 )  

while from (9) and (20) we have for t ~ + ~ ,  
i .e. ,  after the encounter 

F = 4ah ' 2  - k ' 2 .  (31) 

Therefore 

A(h 2) = h '2 - h 2 = 4k '2 .  (32) 

Thus ]h'] >- ]h]: the radial separation of  the 
two satellites can only increase under the 
effect of  the encounter.  This asymmetrical 
behaviour is due to our assumption that the 
orbits are initially circular; if arbitrary ini- 
tial orbits were allowed, (30) would have to 

be replaced by the more general relation 

F = 4a-h 2 - k 2 (33) 

where k is the initial reduced eccentricity, 
and the radial separation could decrease as 
well as increase (Petit, 1985). 

Figure 2a represents h' as a function of  h. 
The dashed lines correspond to h' = h and 
h' = - h ;  the region between these lines is 
empty,  as dictated by (32). For large h, h' -~ 
h (see Section 3.4); for small h, h' = - h  
(see Section 3.5). The upper part of  the fig- 
ure corresponds to downward departure; it 
is shown enlarged in Fig. 2b. The lower part 
of  the figure corresponds to upward depar- 
ture, and is shown enlarged in Fig. 2c. The 
transition zones  described in Section 3.1 
correspond to regions of  violent change of 
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h' in Fig. 2. The curve touches several 
times the lines h' = - h .  These  particular 
points correspond to symmetric orbits, for 
which there is k' = k = 0, and therefore h '2 
= h z. 

Figure 3 shows the final eccentrici ty k' as 
a function of  the initial impact parameter  h. 
This figure is closely related to Fig. 2 be- 
cause of  the relation (32). k' tends to zero 
for both h ~ 0 and h ~ ~. An interesting 
observat ion is that k' seems to be bounded 
from above: it exhibits several maxima with 
values nearly equal and slightly below 4. 

Equat ion (32) represents  a transfer of  en- 
ergy: an increase of  the radial separation of  
the satellites corresponds to a decrease of 
the potential energy of  the system, as is 
easily shown (Brahic, 1977), while an in- 
crease of  k represents  an increase of  the 
kinetic energy. This process is of funda- 
mental importance for the long-term evolu- 
tion of  planetary rings (Brahic, 1977). It can 
be shown (Petit, 1985) that the rate of trans- 
fer of  energy,  in a ring system composed of 
many particles of  equal mass, is propor- 
tional to the integral 

I = hA(h2)dh. (34) 

This integral can be evaluated from the 
present  results, and we quote its value for 
future use: 

I = 7.77. (35) 

. . . .  i . . . .  i . . . .  - -  

~ e  
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g 
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0 ~ 2 .3 

Initial impact parameter, h 

FIG. 3. Final eccentricity k' as a function of the 
initial impact parameter  h. 

This value is not very  accurately deter- 
mined, because of  the wild fluctuations of  h 
in the transition regions. 

3.3. Minimal Distance o f  Approach 

In the present  paper,  the two satellites 
have been considered as points without di- 
mensions. They  can therefore approach 
each other  at an arbitrarily small distance; 
this distance even becomes zero in collision 
orbits. In an astronomical  application, the 
actual size of  the satellites should be taken 
into account.  If  we assume for simplicity 
that the satellites are spherical, with radii r2 
and r3, then any one of  the orbits presented 
here will be physically meaningful only if 
the distance between the satellites never  
becomes less than r2 + r3. In Hill 's coordi- 
nates, the radii of  the satellites are p2 and/93 
defined by 

r2 = a o ~ l / 3 p 2 ,  r3 = aol~l/3p3,  (36)  

and the condition for the existence of  the 
orbit is 

Pmin > P2 q- P3, (37) 

where Prnin is the minimal distance of  ap- 
proach of  the two satellites. The condition 
(37) excludes all collision orbits, as well as 
a finite interval in h around each of  them 
(and possibly other  intervals). 

If condition (37) is violated, the two satel- 
lites come into contact  at some time to. The 
part of  the computed orbit corresponding to 
t < tc is still valid; but for t > t~ the course 
of  events will be entirely different. Depend- 
ing on physical conditions, the two sat- 
ellites might accrete,  or explode into 
fragments,  or bounce ine|astically; these 
developments  will not be considered in the 
present  paper. Petit and H rn o n  (1986; see 
also Petit, 1985) have made a detailed study 
of  satellite interactions when both attrac- 
tion and inelastic rebounds are taken into 
account.  

The quantity Omin is therefore of  interest, 
and is computed for each orbit. Figure 4 
represents Pmin as a function of  h. The verti- 
cal scale is logarithmic, to bet ter  show 
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FIG. 4. Minimal distance of approach as a function 
of the initial impact parameter h. Lower dashed line: 
critical distance for collision of interplanetary particles 
with the Earth. Upper dashed line: critical distance for 
collision of two typical particles in Saturn's rings. I, II, 
III, IV: transition zones. 

small values of  Pmin. (A similar figure, 
showing less detail, has been published by 
Schofield (1981).) For  large h, Pmi, -=- h; for 
small h, Pmin ~ 8/3h 2 (see Section 3.5). The 
transition regions are again characterized 
by violent changes; however,  the variation 
Of Pmin seems to be generally smoother  than 
that of  h' or k'. Collision orbits correspond 
to p..~ = 0; there are three conspicuous 
cases at h = 1.446862, h = 1.620191, and h 
= 1.660405. Other collisions (in infinite 
number) take place in the transition re- 
gions. Discontinuities in the slope of  the 
curve can be seen in several places; this 
corresponds to one local minimum of pmin 
on the orbit displacing another  as the global 
minimum. 

As an example of  the use of this figure, 
we consider the problem of  the accretion 
of  interplanetary particles by the Earth. 
Bodies M1, M2, M3 are the Sun, the Earth,  
and the particle, respectively.  The problem 
is idealized by assuming that the orbits of 
the Earth and of  the particle are circular. 
The radius of  the particle can be neglected. 
Substituting numerical values into (36) and 
(37), we obtain 

prnin > 0.00295. (38) 

This critical value is represented by the 

lower dashed line in Fig. 4. Values of  h for 
which the curve lies below this line corre- 
spond to interplanetary particles which col- 
lide with the Earth.  This happens in three 
large intervals associated with the three 
above-mentioned collision orbits, and also 
in a number  of  smaller intervals associated 
with transition regions. These intervals cor- 
respond to the bands found by Dole (1962, 
Table 2). 

As another  example,  we consider the in- 
teraction of  two particles in Saturn 's  rings. 
Taking a0 = 105 km and assuming a particle 
density of  1 g cm -3, we obtain 

p > 0.514 r2 + r3 
(r 3 + r3)1/3. (39) 

The right side depends only on the relative 
size of  the particles. For  two identical parti- 
cles, we obtain 

p > 0.816, (40) 

while if one particle is much larger than the 
other,  we have 

p > 0.514. (41) 

This last limit is shown as the upper dashed 
line in Fig. 4. Clearly collisions play a domi- 
nant role in this case. 

3.4.  L a r g e  I m p a c t  P a r a m e t e r  

When the impact parameter  h is suffi- 
ciently large, the encounter  produces only 
small deflections of  the orbits (see Fig. 1 for 
h = 2.4), and a perturbation theory can be 
applied. This theory has been given by 
Goldreich and Tremaine (1980), for the case 
where one of  the satellites has a negligible 
mass compared to the other.  The result is 
easily generalized to the case of  an arbi- 
trary mass ratio (see Paper  I); in Hill 's co- 
ordinates,  one obtains 

h' = h + 12s " K~(:~)]2h 5 z~3 [2K0(.~) + 
= h + 3.34379h 5 (42) 

where K0 and KI are modified Bessel func- 
tions. 

Table I compares  the values of h' - h 
obtained by numerical integration with the 



SATELLITE ENCOUNTERS 549 

TABLE 1 

COMPARISON OF NUMERICAL AND 

THEORETICAL RESULTS FOR LARGE h 

h h '  - h 3.34379h 5 

3 0.0172311 0.0137605 
4 0.00357307 0.00326542 
5 0.00111960 0.00107001 
6 0.000441348 0.000430014 
7 0.000202225 0.000198952 
8 0.000103163 0.000102044 
9 0.0000570624 0.0000566274 

10 0.0000336248 0.0000334379 

values predicted by (42). It can be seen that 
(42) correct ly  describes the asymptotic  be- 
havior of  h' for h ~ 2. In fact it is a good 
representat ion even for moderately high 
values of  h: at h = 10, the relative error  is 
already less than I%. 

Moreover ,  the difference between the 
computed and theoretical  values appears to 
behave asymptotically as 18.7h -8 approxi- 
mately, suggesting that (42) is the beginning 
of  a series of  the form 

h' 
- -  = 1 + 3.34379h -6 + 18.7h -9 + • • .. 
h 

(43) 

An extension of  the theory might be able to 
account  for this. 

3.5. Small  Impact  Parameter  

When the impact parameter  is small, the 
orbit assumes the well-known " h o r s e s h o e "  
shape (see, for  instance, the last frame in 
Fig. 1). It is almost exactly symmetrical  
with respect  to the "O axis. A first-order per- 
turbation theory (see Paper  I) gives the fol- 
lowing equation for the orbit: 

"o(h 2 _ ~2) = ~. (44) 

This is indeed symmetrical.  Equation (44) 
shows also that the minimal distance be- 
tween the satellites is reached at the "0-axis 
crossing, and is 

8 
Pmin -~" 3h 2" (45) 

In fact a much stronger result can be dem- 
onstrated: it can be shown that an adiabatic 
invariant exists for  h ---* 0 (Paper I). The 
conservat ion of  this adiabatic invariant im- 
plies the symmetry  of  the orbit, and in par- 
ticular: h' = - h  and k' = 0. A theoretical 
computat ion (see Paper I) gives the follow- 
ing asymptotic  expression of  the final ec- 
centricity k' for h ~ 0: 

k' = 22/33 3/25F(§) exp ( -  ~ 3 ) .  (46) 
8zr 

Thus,  k' decreases  extremely rapidly for 
h ~ 0, faster  than any power  of  h. Figure 5 
shows that (46) agrees reasonably well with 
the numerical results, although the conver-  
gence to the asymptot ic  form seems to be 
rather slow. 

3.6. Transition Zones  

Figure 1 shows that, as h is varied, the 
departure of  M3 sometimes changes sud- 
denly from downwards  to upward, or con- 
versely. This will be called a transition. We 
will now analyze transitions in some detail 
and explain their origin. 

First we shall refine the definition of  a 
transition just  given. We use again a system 
p, ¢ of  polar coordinates in the ~, 'O plane. 
Let  A¢ be the total variation of  ¢, from t 
= - ~  to t = +¢¢. Both ends of the orbit cor- 
respond to "O ~ ---~, with ~: finite, as shown 

- - '  i , i , i , i 

o . -  

~ :  o 
~ T  

o ?- 
2 4 6 8 

h - 3  

FIG. 5. Full line: final eccentricity for small values of 
the impact parameter. Dashed line: asymptotic for- 
mula (46). 
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by equations (12) and (20); therefore 
A~k is a multiple of  7r. In general, a 
small change in h does not change the value 
of  A~b. Across some particular values of  h, 
however ,  A~b changes discontinuously by a 
multiple of  7r. A first obvious case is that of  
collision orbits. A simple analysis shows 
(see Petit (1985) for detailed illustrations) 
that the change of  A~O across a collision or- 
bit is ---47r. We want to exclude collision 
orbits from our  considerations,  since they 
are not true singularities (as already men- 
tioned). This suggests that we define the in- 
dex of  an orbit as 

j = Atb (mod 4). (47) 

j can take the values 0, 1, 2, 3. This index is 
invariant in any interval where the orbit 
changes continuously with h, including pas- 
sages through collision orbits. Conversely,  
a change in the index means that the family 
SE has suffered a discontinuity of some 
kind. So we redefine a transition as a 
change in j .  Note  that with this new defini- 
tion we catch more transitions than with the 
earlier one, since we have now four classes 
of  orbits ( j  = 0, 1, 2, 3) instead of  two 
(departure upward or downward).  The old 
definition was equivalent to distinguishing 
only between j odd or even. 

In regularized coordinates,  the index has 
a simple meaning: the regularized polar an- 
gle is $ = qd2, and therefore the values 0, 1, 
2, 3 of  the index correspond to a departure 
in the first, second, third, and fourth quad- 
rants, respectively.  

Table II gives observed values of  the in- 
dex j ,  at a resolution of  10 -4 in h. Each line 
refers either to an interval in which family 
SE appears to be continuous (and therefore 
has a constant j ) ,  or to a single value of  h. 
The existence of  many transitions is appar- 
ent. Note  that this is not an exhaustive tab- 
ulation of  the j values: in every interval of 
width 10 -4 separating one line from the 
next, an arbitrary number of  transitions can 
take place. 

The presence of  these transitions is puz- 

T A B L E  11 

INDEX j AS A FUNCTION OF THE IMPACT 

PARAMETER h 

h j h j 

to 1.7188 3 1.6497 to 1.5931 2 
1.7187 0 1.5930 to 1.5922 3 

1.7186 to 1.7184 2 1.5921 to 1.5920 0 

1.7183 to  1.7166 1 1.5919 2 
1.7165 2 1.5918 to 1.3486 1 

1.7164 to 1.6664 0 1.3485 to 1.3484 3 
1.6663 to  1.6647 1 1.3483 0 

1.6646 2 1.3482 to 1.3397 2 

1.6645 0 1.3396 0 
1.6644 2 1.3395 to 1.3381 3 

1.6643 I 1.3380 to 1.3377 0 
1.6642 I 1.3376 to 1.3375 1 

1.6641 to 1.6600 0 1.3374 2 
1.6599 to 1.6501 3 1.3373 2 
1.6500 to 1.6499 0 1.3372 to 1.3362 1 

1.6498 3 1.3361 to 0 0 

zling at first view. The differential equa- 
tions (8) contain no true singularities, since 
the apparent  singularity at the origin can be 
removed by regularization. Therefore  the 
position of  body M3 after a given time 
should be a continuous function of  its initial 
position and velocity. How then is it possi- 
ble for the final motion to jump from up- 
wards to downwards  when h changes con- 
tinuously? 

This paradox provides in fact the clue: it 
indicates that to achieve a transition, we 
must pass through an orbit for which the 
duration of  the " t empora ry  cap ture"  is infi- 
nite. One way to achieve this is that the 
orbit tends asymptotically toward a peri- 
odic orbit. 

This is confirmed by numerical results. 
Figure 6 represents,  as an example,  the or- 
bit for 

h = 1.718779940 (48) 

which is the first transition encountered 
when coming from high values of h. The 
orbit is seen to tend toward a kidney- 
shaped periodic orbit. This limiting orbit is 
easily identified: it belongs to the one-pa- 
rameter  family a of periodic orbits, emanat- 
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FIG. 6. An orbit of  family SE which is asymptot ic  to 
an  uns table  periodic orbit. 

ing from the Lagrangian point L2 (Hrnon, 
1969, Fig. 2). The value of the Jacobi con- 
stant is given by (30) 

F = 2.215653362. (49) 

This value identifies the particular orbit of 
family a which is involved here. 

It will be helpful to introduce at this point 
a surface of section, defined for instance 
by ~ = 0, 4/ > 0 (Hrnon,  1970): for each 
crossing of an orbit with the ~: axis in the 
positive direction (7 increasing), we plot a 
point with coordinates ~, ~ (Fig. 7). An orbit 
is then represented by a sequence of points. 
For a given value of F, a point in the surface 
of section defines completely the corre- 
sponding orbit: ~, ~:, ~ are immediately 
known and 7} can be computed from (9). In 
particular, the next intersection point can 
be found. This defines a mapping of the sur- 
face of section onto itself, known as a Poin- 
car~ map. 

Note that an encounter-type orbit of the 
kind considered in the present paper corre- 
sponds in general to a finite sequence of 
points in the surface of section; for instance 
the orbit for h = 1.7187, Fig. la, corre- 
sponds to a sequence of three points. 
Therefore a point of the surface of section 
does not always have an image in the Poin- 
car6 map. Similarly, it does not always 
have an antecedent.  The sequence can even 

be empty,  as for instance for h = 2.4, Fig. 
la. 

We consider in particular the Poincar6 
map corresponding to the value (49) of F. 
The periodic orbit corresponds to a fixed 
point P of  this map. This periodic orbit 
must be unstable since it admits an asymp- 
totic orbit. Indeed its stability index is of 
the order of 320 (Hrnon,  1969, Table 2), 
corresponding to two real eigenvalues hj --- 
1/640 and h2 -~ 640. The eigenvalue smaller 
than 1 in modulus (hi) is associated with a 
one-parameter family of incoming orbits 
tending towards the periodic orbit. The or- 
bit of Fig. 6 is a member of this family. (A 
picture of the whole family can be obtained 
by applying a symmetry with respect to the 
horizontal axis to Figs. 8a and b.) In the 
surface of section, an incoming orbit is rep- 
resented by an infinite sequence of points 
Y0, YI, Y2 . . . . .  which lie on a curve Ws 
known as the stable inuariant manifold of 
P, and which converge exponentially on P 
(Fig. 7). 

The eigenvalue larger than 1 in modulus 
(h2) is associated with a one-parameter fam- 
ily of outgoing orbits, which tend toward 
the periodic orbit for t --~ - ~. For t increas- 
ing, these orbits emerge from the periodic 
orbit and go away at an exponential rate. 
The family of outgoing orbits is shown in 

Wst go /  
\ \ y "  

++ 

FIG. 7. Sketch o f  the  surface o f  section. The  value of  
h l has  been  artifically increased to show the s t ructure  
more  clearly. 
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Figs. 8a and b. In the surface of section, an 
outgoing orbit corresponds to a sequence of 
points . . . .  Z-2, Z l, Z0, infinite toward 
the past, which lie on the unstable invariant 
manifold Wu of P and which diverge expo- 
nentially from P (Fig. 7). 

Consider now an orbit of family SE with 
a value of h slightly larger than (48). Corre- 
sponding points in the surface of section 
will be slightly displaced. Also, F will be 
slightly different from the value (49), so that 
there will be a small displacement of the 
periodic orbit, of the fixed point P, and of 
the invariant manifolds Ws and Wu. As a 
result, the points in the surface of section 
will lie slightly besides Ws; examination 
shows that they lie to the right of Ws 
(crosses in Fig. 7). They will remain close 
to it until they reach the vicinity of P; then 
they go away, approaching closely W,. 
Now a crucial fact is that h2 is positive; 
therefore the points go away along one 
branch only of Wu. For h larger than (48), 
this is the upper right branch of Wu. 

Consider next a value of h slightly 
smaller than (48). Then the approaching 
points lie slightly to the left of W~, and after 
reaching the vicinity of P they go away 
along the lower left branch of W,. Thus, 

when h crosses the critical value (48), the 
points suddenly jump from one branch of 
Wu to the other. The two branches lead the 
orbit into entirely different regions of phase 
space. This is essentially the explanation of 
how transitions arise. 

We note again that only the asymptotic 
behaviour of the points for t ~ +~  is dis- 
continuous at a transition; the position of 
any given point is a continuous function of 
h. As h approaches the critical value, the 
orbit spends more and more time in the vi- 
cinity of the periodic orbit; in the surface of 
section, the points accumulate near P be- 
fore finally moving away. 

We remark incidentally that the incoming 
orbit of Fig. 6 belongs to the set of measure 
zero of orbits undergoing permanent cap- 
ture (see Section 3.1). Figure 6 seems to 
contradict our earlier assertion that perma- 
nent capture was never observed. Actually 
it does not. The computed orbit, repre- 
sented on Fig. 6, differs very slightly from 
the exact asymptotic orbit because the 
value (48) can only be specified with finite 
accuracy and also because of numerical er- 
rors. As a consequence, after having made 
a finite number of loops in the close vicinity 
of the periodic orbit, it departs to infinity. 

a i i 
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FIG. 8. (a) Outgoing orbits for h above the critical value (48). (b) Outgoing orbits for h below the 
critical value (48). 
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To obtain Fig. 6 it was necessary to inter- 
rupt the integration at an appropriate time 
(the fifth crossing of  the ~: axis was chosen). 

Figures 8a and b represent  the outgoing 
orbits separately for each branch of  Wu. In 
each case we have a cyclic family. Figure 
8a corresponds to values of  h larger than 
(48). The points move away from P along 
the upper  right branch of  Wu in Fig. 7. The 
family has a simple structure in this case, 
and all outgoing orbits depart  in the down- 
ward direction. Figure 8b corresponds to 
values of  h smaller than (48). The points 
move away along the lower left branch of 
Wu. It is apparent  that the behaviour  is 
completely different from that of  Fig. 8a. It 
is also much more complicated.  The orbits 
depart sometimes upward, sometimes 
downward.  

This last fact indicates that the true situa- 
tion is even more complex than the above 
description would suggest. Instead of  de- 
parting immediately, the outgoing orbit 
may well encounter  another  unstable peri- 
odic orbit; this will again give rise to a tran- 
sition, which might be called a second-or- 
der transition since now two unstable 
periodic orbits are involved. In this way, a 
hierarchical structure of  transitions of  
higher and higher order  is built. We remark 
also that as h approaches a critical value 
such as (48), essentially the same outgoing 
orbit is obtained for an infinite sequence of  
h values, forming a geometrical  progression 
of ratio h l (see Petit (1985) for illustrations). 
This gives rise to a self-similar, Cantor-like 
structure for  the set of  the transitions. We 
shall not dwell further  here on this subject, 
which we plan to explore in a future paper. 

3.7. Comparison with Earlier Results 

The present  results are essentially in 
agreement  with earlier computations.  
There are, however ,  minor quantitative dif- 
ferences,  due to the fact that different ap- 
proximations have been used. It is of  inter- 
est to investigate these differences: this 
shows the effect  of  the approximations.  

Giuli (1968a, Table I) gives values for the 

boundaries of  the major " b a n d s "  in which 
interplanetary particles hit the Earth. It will 
be convenient  to use these values as a basis 
for  the comparison.  Three different cases 
have been considered by Giuli. In case 1, 
the Earth has its present  mass; this corre- 
sponds to /x 1/3 = 0.01443 in our notation. 
The numerical integration starts at 0.215 
a.u.,  corresponding to "q0 = 14.9 in our 
units. In case 2, the initial distance is in- 
creased to 0.5 a.u. ,  corresponding to 70 = 
34.7. Case 3 corresponds to an "ear ly-  
s tage" Earth,  with a mass smaller by a fac- 
tor 1000 and with the initial distance still 
equal to 0.5 a.u.;  this corresponds to /z  1/3 = 
0.001443 and */0 = 347. The boundaries 
found by Giuli for the different cases are 
translated into Hill 's coordinates by the re- 
lation a = 1 + /d,I/3hG and are reproduced in 
Table III, column 2. 

In the present  paper, these bands corre- 
spond to the two major intervals of  h for 
which Pmin becomes less than 0.00295, 
around the collision orbits at h = 1.446862 
and h = 1.660405 (see Section 3.3 and Fig. 
4). The boundaries hp found by us are given 
in Table III, column 3. The value is the 
same in all three cases, since in Hill 's for- 
malism the solution does not depend on the 
masses of  the satellites, and since the orbit 
as computed in the present  paper  is not af- 
fected by the choice of  the initial value r/0. 
Note  also that in Hill 's case one obtains 
symmetrical  values of  h for " inner  
bands"(h  < 0) and "o u t e r  bands"  (h > 0). 

Ihol is always smaller than IhPI; this is 
most pronounced  in case 1. This is a conse- 
quence of  the fact that in Giuli 's computa- 
tions, the integration was started at a not 
very  large distance, "00 = 14.9, with the par- 
ticle still on its circular orbit. In other 
words,  the attraction of  the Earth between 
~/= o¢ and ~ = 14.9 was ignored. This pro- 
duces an error  of  the order  of r/o 1, as shown 
by (17). A first-order correct ion can be ap- 
plied to Giuli 's values, using the second 
term in (17): 

4/,--I -1 hGc = ho + ~,,p ~/0 • (50) 
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T A B L E  IlI 

COMPARISON WITH THE RESULTS OF GIUL! (1968a) 

Case h6 hp hGc hpc 

1 -1.6020 -1.6702 -1.6556 -1.6558 
2 -1.6296 -1.6702 -1.6526 -1.6558 
3 -1.6660 -1.6702 -1.6683 -1.6688 

1 -1.5794 -1.6484 -1.6337 -1.6340 
2 -1.6072 -1.6484 -1.6305 -1.6340 
3 -1.6445 -1.6484 -1.6468 -1.6470 

1 -1.3912 -1.4688 -1.4521 -1.4544 
2 -1.4291 -1.4688 -1.4553 -1.4544 
3 -1.4643 -1.4688 -1.4669 -1.4674 

1 -1 .3476  -1 .4273 -1 .4103 -1 .4129  
2 -1 .3878  -1 .4273 -1 .4147  -1 .4129  
3 -1 .4234  -1 .4273 -1 .4261 -1 .4259  

1 1.3702 1.4273 1.4329 1.4417 
2 1.4418 1.4273 1.4387 1.4417 
3 1.4262 1.4273 1.4289 1.4287 

1 1.4150 1.4688 1.4759 1.4832 
2 1.4537 1.4688 1.4799 1.4832 
3 1.4671 1.4688 1.4697 1.4702 

1 1.6097 1.6484 1.6640 1.6628 
2 1.6381 1.6484 1.6614 1.6628 
3 1.6480 1.6484 1.6503 1.6498 

1 1.6330 1.6702 1.6866 1.6846 
2 1.6605 1.6702 1.6835 1.6846 
3 1.6695 1.6702 1.6718 1.6716 

The corrected values are shown in column 
4 of  Table III .  The  agreement  is now much 
better.  

The remaining difference hGc -- hp is al- 
ways  posit ive,  and therefore  corresponds  
to an asymmetr ica l  effect: Ihcc[ < IhPI for 
inner orbits,  Ihccl > IhPI for outer  orbits. 
Also it is approximate ly  ten t imes smaller in 
case 3 than in cases 1 and 2, and therefore 
proport ional  to/~/3. This difference is most  
likely a consequence  of the substitution of 
Hill 's  equations for the exact  three-body 
equations in the present  paper.  This substi- 
tution introduces errors  of  the order  o f /z  ~/3 
(see Paper  I), and as is easily seen, the 

dominant  error  t e rm is quadratic in ~: and a~ 
and therefore  has a constant  sign. 

An empirical  correct ion can be applied to 
our values: 

hpc = hp + bl xl/3 (51) 

where  b is a constant ,  to be adjusted in an 
ad hoc fashion. It  was found that  b = 1 
gives sat isfactory results. The correspond-  
ing values of  hpc are given in column 5 of 
Table III .  The agreement  be tween columns 
4 and 5 is quite good in most  cases.  

A similar compar i son  can be carried out 
with the results of  Dole (1962, Table 2), 
who gives values for seven inner bands.  
Exact ly  the same effects are found. 

3.8. Noncircular Motions 

A natural  generalization of  the present  
work  would be to consider  the case where 
the two satellites are initially on elliptical 
orbits. Unfor tunate ly  the number  of  essen- 
tial pa ramete rs  j umps  then f rom one to 
three. The asymptot ic  form of  the motion 
before the encounter  is given by an expres-  
sion identical to (20), with the pr imes sup- 
pressed.  It  depends on four arbi trary pa- 
rameters  h, k, ~o, ~-. The pa ramete r  r can be 
eliminated by  a change of  the origin of  time, 
but we are still left with three parameters :  
the initial impact  pa rame te r  h, the initial re- 
duced eccentrici ty k, and the initial phase ~. 
A detailed explorat ion,  analogous to what 
has been  done here for  the circular case,  is 
clearly not feasible. Petit and H6non (1986; 
see also Petit, 1985) have used a Monte  
Carlo approach,  in which ~ and k are cho- 
sen at random with appropr ia te  distribution 
functions.  Results for the eccentr ic  case 
have also been  given by  Giuli (1968a). 

Another  natural generalization would be 
to consider  orbits with nonzero  inclina- 
tions. The equations (8) are easily general- 
ized to this case (Hill, 1878). However ,  in 
Hill 's  coordinates ,  this again introduces 
two new parameters :  the amplitude and 
phase  of  the mot ion perpendicular  to the 
plane. This brings the total to five parame-  
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ters. Here again a Monte Carlo approach 
might be indicated. 
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Note added in proof. In our literature search for 
earlier work on the subject, we overlooked a paper by 
S. Nishida (1983): Collisional processes of planetesi- 
reals with a protoplanet under the gravity of the proto- 
Sun; Prog. Theor. Phys. 70, 93-105. As in previous 
papers, the three-body problem equations are used, 
and the starting values are those of circular orbits. 
Nevertheless, the results are very similar; compare, 
for instance, Nishida's Fig. 3 with our Figs. 2 and 3. 
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